新闻目录
新闻详情

人工智能在制造业领域呈现几大应用方向

    在国家大力发展中国制造2025的大背景下,各种新技术,如人工智能、大数据等,也在加速在工业领域应用。17年在全社会的热潮和推动下,人工智能在工业领域的应用也取得了一些进展,涌现了一些公司和案例。综合来看,目前人工智能在制造业领域主要有三个方向:视觉缺陷检测、机器人视觉定位和故障预测。

    在深度神经网络发展起来之前,机器视觉已经长期应用在工业自动化系统中,如仪表板智能集成测试、金属板表面自动控伤、汽车车身检测、纸币印刷质量检测、金相分析、流水线生产检测等等,大体分为拾取和放置、对象跟踪、计量、缺陷检测几种,其中,将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。机器视觉自动化设备可以代替人工不知疲倦的进行重复性的工作,且在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,机器视觉可替代人工视觉。

    据工业级机器视觉行业研究报告,截止16年。目前进入中国市场的国际机器视觉品牌已经超过100 多家,中国本土的机器视觉企业也超过100 家,产品代理商超过200 家,专业的机器视觉系统集成商超过50家,涵盖了从光源、工业镜头、相机、图像采集卡等多种机器视觉产品。

    在人工智能浪潮下,基于深度神经网络,图像识别准确率有了进一步提升,也在缺陷检测领域取得了更多的应用。国内不少机器视觉公司和新兴创业公司,也都开始研发人工智能视觉缺陷检测设备,例如高视科技、阿丘科技、瑞斯特郎等。不同行业对视觉检测的需求各不相同,本文仅列举了视觉缺陷检测的应用方向中的极小一部分工业平板电脑.

    高视科技2015年完成了屏幕模组检测设备研发,已向众多国内一线屏幕厂商提供50多台各型设备,可以检测出38类上百种缺陷,且具备智能自学习能力。17年高视科技也完成了超过5000万元的A轮融资,由同创伟业领投,勤道资本、华青资本、惠南投资和利元亨科技跟投。

    阿丘科技则推出了面向工业在线质量检测的视觉软件平台AQ-Insight,主要用于产品表面缺陷检测,可用于烟草行业,实现烟草异物剔除、缺陷检测。相比于传统的机器视觉检测,AQ-Insight希望能处理一些较为复杂的场景,例如非标物体的识别等,解决传统机器视觉定制化严重的问题。

    工业上有许多需要分捡的作业,采用人工的话,速度缓慢且成本高,如果采用工业机器人的话,可以大幅减低成本,提高速度。但是,一般需要分捡的零件是没有整齐摆放的,机器人必须面对的是一个无序的环境,需要机器人本体的灵活度、机器视觉、软件系统对现实状况进行实时运算等多方面技术的融合,才能实现灵活的抓取,困难重重。

 

京公网安备 11011702000333号